Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 12(6): e1389, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129981

RESUMO

The Streptomyces genus is known to produce many specialized metabolites of value for medicine, but the potential of these metabolites in agronomy remains largely unexplored. In this study, we investigated three phylogenetically closely related Streptomyces strains (B5, B91, and B135) isolated from three distinct soil samples in Sudan. Despite belonging to the same species, these strains exhibited different ranges of Phytophthora infestans inhibition. The objective of this work was to identify the active compound(s) responsible for the inhibition of P. infestans and of other plant pathogens by comparing the genomes and metabolomes of the three strains which showed distinct activity patterns: B5 was the strongest inhibitor of oomycetes, B5 and B91 both inhibited most fungi and B135 was the only strain showing antibacterial activity. Our comparative genomic and metabolomic analysis identified borrelidin as the bioactive compound underlying B5's strong anti-oomycete activity and highlighted a few other metabolites as putative candidates underlying the strains' antifungal and antibacterial activities. This study illustrates the power of comparative genomics and metabolomics on phylogenetically closely related strains of differing activities to highlight bioactive compounds that could contribute to new sustainable crop protection strategies.


Assuntos
Streptomyces , Streptomyces/metabolismo , Antifúngicos/metabolismo , Genômica , Fungos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
mBio ; 14(5): e0085723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650608

RESUMO

IMPORTANCE: Bacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two Pseudomonas strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds. Our data suggest that bacteria could use HCN not only to control their own cellular functions, but also to remotely influence the behavior of other bacteria sharing the same environment. Since HCN emission occurs in both clinically and environmentally relevant Pseudomonas, these findings are important to better understand or even modulate the expression of bacterial traits involved in both virulence of opportunistic pathogens and in biocontrol efficacy of plant-beneficial strains.


Assuntos
Cianeto de Hidrogênio , Pseudomonas , Pseudomonas/genética , Pseudomonas/metabolismo , Cianeto de Hidrogênio/metabolismo , Cianeto de Hidrogênio/farmacologia , Plantas/microbiologia
3.
Phytopathology ; 112(10): 2099-2109, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35536116

RESUMO

Potato production worldwide is plagued by several disease-causing pathogens that result in crop and economic losses estimated to billions of dollars each year. To this day, synthetic chemical applications remain the most widespread control strategy despite their negative effects on human and environmental health. Therefore, obtainment of superior biocontrol agents or their naturally produced metabolites to replace fungicides or to be integrated into practical pest management strategies has become one of the main targets in modern agriculture. Our main focus in the present study was to elucidate the antagonistic potential of a new strain identified as Bacillus subtilis EG21 against potato pathogens Phytophthora infestans and Rhizoctonia solani using several in vitro screening assays. Microscopic examination of the interaction between EG21 and R. solani showed extended damage in fungal mycelium, while EG21 metabolites displayed strong anti-oomycete and zoosporecidal effect on P. infestans. Mass spectrometry (MS) analysis revealed that EG21 produced antifungal and anti-oomycete cyclic lipopeptides surfactins (C12 to C19). Further characterization of EG21 confirmed its ability to produce siderophores and the extracellular lytic enzymes cellulase, pectinase and chitinase. The antifungal activity of EG21 cell-free culture filtrate (CF) was found to be stable at high-temperature/pressure treatment and extreme pH values and was not affected by proteinase K treatment. Disease-inhibiting effect of EG21 CF against P. infestans and R. solani infection was confirmed using potato leaves and tubers, respectively. Biotechnological applications of using microbial agents and their bioproducts for crop protection hold great promise to develop into effective, environment-friendly and sustainable biocontrol strategies. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Celulases , Quitinases , Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Celulases/metabolismo , Celulases/farmacologia , Quitinases/metabolismo , Endopeptidase K/metabolismo , Endopeptidase K/farmacologia , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Humanos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Poligalacturonase/metabolismo , Rhizoctonia , Sideróforos/metabolismo , Sideróforos/farmacologia , Solanum tuberosum/microbiologia
4.
J Fungi (Basel) ; 8(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35330321

RESUMO

Two Neofusicoccumparvum isolates and a UV mutant were characterized for their phytotoxin production in vitro, their pathogenicity on grapevine, and their genome sequenced. The isolate Np-Bt67 produced high level of (-)-terremutin, but almost no (R)-mellein, and it was the most aggressive on grapevine, triggering apoplexy. Similar symptoms were not induced by purified (-)-terremutin. The isolate Bourgogne S-116 (Np-B) produced 3-fold less (-)-terremutin and high amounts of (R)-mellein, but it was less aggressive on grapevine than Np-Bt67. The UV9 mutant obtained from Np-B (NpB-UV9) no longer produced (-)-terremutin but overproduced (R)-mellein by 2.5-fold, and it was as pathogenic as its parent. NpB-UV9 differed from its parent by simple mutations in two genes (transcription factor UCR-NP2_6692, regulatory protein UCR-NP2_9007), not located neither near (R)-mellein, nor (-)-terremutin biosynthetic genes, but likely involved in the control of (-)-terremutin biosynthesis. Grapevine immunity was disturbed upon challenge with these pathogens or purified phytotoxins, leading to an upregulation of SA-dependent defenses, while (-)-terremutin interfered with host JA/ET-dependent defenses. Our results suggest that neither (-)-terremutin nor (R)-mellein alone is essential for the pathogenicity of N. parvum on grapevine, since isolate/mutant non-producing these toxins in vitro is pathogenic. However, these phytotoxins could play a quantitative role in the infection process.

5.
Front Plant Sci ; 10: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30733727

RESUMO

Plant pathogens have evolved various strategies to enter hosts and cause diseases. Particularly Neofusicoccum parvum, a member of Botryosphaeria dieback consortium, can secrete the phytotoxins (-)-terremutin and (R)-mellein during grapevine colonization. The contribution of phytotoxins to Botryosphaeria dieback symptoms still remains unknown. Moreover, there are currently no efficient control strategies of this disease, and agro-environmental concerns have raised increasing interest in biocontrol strategies to limit disease spread in vineyards, especially by using some promising beneficial bacteria. Here, we first examined in planta the biocontrol capacity of Bacillus subtilis PTA-271 against N. parvum Np-Bt67 strain producing both (-)-terremutin and (R)-mellein. We then focused on the direct effects of PTA-271 on pathogen growth and the fate of pure phytotoxins, and explored the capacity of PTA-271 to induce or prime grapevine immunity upon pathogen infection or phytotoxin exposure. Results provided evidence that PTA-271 significantly protects grapevine cuttings against N. parvum and significantly primes the expression of PR2 (encoding a ß-1,3-glucanase) and NCED2 (9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis) genes upon pathogen challenge. Using in vitro plantlets, we also showed that PTA-271 triggers the expression of salicylic acid- and jasmonic acid-responsive genes, including GST1 (encoding a glutathione-S-transferase) involved in detoxification process. However, in PTA-271-pretreated plantlets, exogenous (-)-terremutin strongly lowered the expression of most of upregulated genes, except GST1. Data also indicated that PTA-271 can detoxify both (-)-terremutin and (R)-mellein and antagonize N. parvum under in vitro conditions. Our findings highlight (-)-terremutin and (R)-mellein as key aggressive molecules produced by N. parvum that may weaken grapevine immunity to promote Botryosphaeria dieback symptoms. However, PTA-271 can efficiently attenuate Botryosphaeria dieback by enhancing some host immune responses and detoxifying both phytotoxins produced by N. parvum.

6.
J Nat Prod ; 81(6): 1301-1310, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29792428

RESUMO

The structures of three new cyclic depsipeptides, tiahuramides A (1), B (2), and C (3), from a French Polynesian collection of the marine cyanobacterium Lyngbya majuscula are described. The planar structures of these compounds were established by a combination of mass spectrometry and 1D and 2D NMR experiments. Absolute configurations of natural and nonproteinogenic amino acids were determined through a combination of acid hydrolysis, derivitization with Marfey's reagent, and HPLC. The absolute configuration of hydroxy acids was confirmed by Mosher's method. The antibacterial activities of tiahuramides against three marine bacteria were evaluated. Compound 3 was the most active compound of the series, with an MIC of 6.7 µM on one of the three tested bacteria. The three peptides inhibit the first cell division of sea urchin fertilized eggs with IC50 values in the range from 3.9 to 11 µM. Tiahuramide B (2), the most potent compound, causes cellular alteration characteristics of apoptotic cells, blebbing, DNA condensation, and fragmentation, already at the first egg cleavage. The cytotoxic activity of compounds 1-3 was tested in SH-SY5Y human neuroblastoma cells. Compounds 2 and 3 showed an IC50 of 14 and 6.0 µM, respectively, whereas compound 1 displayed no toxicity in this cell line at 100 µM. To determine the type of cell death induced by tiahuramide C (3), SH-SY5Y cells were costained with annexin V-FITC and propidium iodide and analyzed by flow cytometry. The double staining indicated that the cytotoxicity of compound 3 in this cell line is produced by necrosis.


Assuntos
Organismos Aquáticos/química , Cianobactérias/química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Biologia Marinha/métodos , Neuroblastoma/tratamento farmacológico
7.
Mol Plant Microbe Interact ; 30(12): 946-959, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28841114

RESUMO

Esca disease is one of the major grapevine trunk diseases in Europe and the etiology is complex, since several inhabiting fungi are identified to be associated with this disease. Among the foliar symptom expressions, the apoplectic form may be distinguished and characterized by sudden dieback of shoots, leaf drop, and shriveling of grape clusters in a few days that can ultimately induce the plant death. To further understand this drastic event, we conducted transcriptomic and metabolomic analyses to characterize responses of leaves during the period preceding symptom appearance (20 and 7 days before foliar symptom expression) and at the day of apoplexy expression. Transcriptomic and metabolomic analyses provide signatures for the apoplectic leaves and most changes concerning the metabolism of carbohydrates, amino acids, and phenylpropanoids. In deciphering glutathione-S-transferase (GST), its preferential location in phloem, correlated with the upregulation of GST genes and a decrease of the glutathione level, offers further support to the putative role of glutathione during apoplexy expression.


Assuntos
Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Ciclotrons , Análise de Fourier , Fungos/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Glutationa/metabolismo , Hibridização In Situ , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Vitis/genética
8.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385831

RESUMO

The ascomycete Diplodia seriata is a causal agent of grapevine trunk diseases. Here, we present the draft genome sequence of D. seriata isolate F98.1 (37.27 Mb, 512 contigs, 112 scaffolds, and 8,087 predicted protein-coding genes).

9.
Phytopathology ; 106(6): 541-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26882851

RESUMO

Trunk diseases have become among the most important grapevine diseases worldwide. They are caused by fungal pathogens that attack the permanent woody structure of the vines and cause various symptoms in woody and annual organs. This study examined modifications of plant responses in green stem, cordon, and trunk of grapevines expressing Esca proper (E) or apoplexy (A) event, which are the most frequent grapevine trunk disease symptoms observed in Europe. Transcript expression of a set of plant defense- and stress-related genes was monitored by quantitative reverse-transcription polymerase chain reaction while plant phytoalexins and fungal metabolites were quantified by high-performance liquid chromatography-mass spectrometry in order to characterize the interaction between the grapevine and trunk disease agents. Expression of genes encoding enzymes of the phenylpropanoid pathway and trans-resveratrol content were altered in the three organs of diseased plants, especially in the young tissues of A plants. Pathogenesis-related proteins and the antioxidant system were severely modulated in A plants, which indicates a drastic stress effect. In the meantime, fungal polyketides 6-MSA, (R)-mellein, and (3R,4R)-4-hydroxymellein, were accumulated in A plants, which suggests their potential effect on plant metabolism during the appearance of foliar symptoms.


Assuntos
Fungos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/microbiologia , Vitis/metabolismo , Caules de Planta/microbiologia , Polifenóis/metabolismo , Sesquiterpenos/metabolismo , Estresse Fisiológico , Fitoalexinas
10.
Plant Dis ; 100(6): 1071-1079, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30682279

RESUMO

Botryosphaeria dieback is a grapevine trunk disease with a worldwide distribution associated with Diplodia seriata and Neofusicoccum parvum, among several other Botryosphaeriaceae species. The aforementioned xylem-inhabiting fungi cause wood lesions and leaf and berry symptoms, and eventually lead to the death of the plant. The aim of this work was to develop a simple model system to reproduce the foliar symptoms caused by D. seriata and N. parvum to better characterize fungal pathogenicity and determine the mechanisms involved in symptom development. Green stems of grafted 'Aragonez' grapevine cuttings were inoculated with three isolates of N. parvum and two isolates of D. seriata with different degrees of virulence and the experiment was repeated four times from 2011 to 2014. Three months after inoculation, the lesions associated with N. parvum were larger than those associated with D. seriata. Similarly, 8 months after inoculation, the percentage of plants showing foliar symptoms was greater in the N. parvum treatments than in the D. seriata treatments. During the emergence of foliar symptoms, plant stress-related responses were modulated in green stems and leaves, especially a downregulation of superoxide dismutase (SOD) and fasciclin-like arabinogalactan protein (fascAGP) and an upregulation of stilbene synthase (STS) genes with an accumulation of phenolics. In conclusion, the simple model system developed allowed a good characterization of isolate pathogenicity and correlation with foliar symptoms of Botryosphaeria dieback, namely spots on leaf margin and blade.

11.
Phytochemistry ; 115: 207-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25747381

RESUMO

Liquid chromatography-diode array screening of the organic extract of the cultures of 13 isolates of the fungus Neofusicoccum parvum, the main causal agent of botryosphaeria dieback of grapevine, showed similar metabolites. One strain was selected for further chemical studies and led to the isolation and characterisation of 13 metabolites. Structures were elucidated through spectroscopic analyses, including one- and two-dimensional NMR and mass spectrometry, and through comparison to literature data. The isolated compounds belong to four different chemical families: five metabolites, namely, (-)-terremutin (1), (+)-terremutin hydrate (2), (+)-epi-sphaeropsidone (3) (-)-4-chloro-terremutin hydrate (4) and(+)-4-hydroxysuccinate-terremutin hydrate (5), belong to the family of dihydrotoluquinones; two metabolites, namely, (6S,7R) asperlin (6) and (6R,7S)-dia-asperlin (7), belong to the family of epoxylactones; four metabolites, namely, (R)-(-)-mellein (8), (3R,4R)-4-hydroxymellein (9), (3R,4S)-4-hydroxymellein (10) (R)(-)-3-hydroxymellein (11), belong to the family of dihydroisocoumarins; and two of the metabolites, namely, 6-methyl-salicylic acid (12) and 2-hydroxypropyl salicylic acid (13), belong to the family of hydroxybenzoic acids. We determined the phytotoxic activity of the isolated metabolites through a leaf disc assay and the expression of defence-related genes in Vitis vinifera cells cv. Chardonnay cultured with (-)-terremutin (1), the most abundant metabolite. Finally, analysis of the brown stripes of grapevine wood from plants showing botryosphaeria dieback symptoms revealed the presence of two of the isolated phytotoxins.


Assuntos
Ascomicetos/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Doenças das Plantas/microbiologia , Quinonas/isolamento & purificação , Quinonas/farmacologia , Vitis/microbiologia , Citotoxinas/química , Estrutura Molecular , Quinonas/química , Estereoisomerismo
12.
Nat Plants ; 1: 15127, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250680

RESUMO

Plants have evolved efficient defence systems against pathogens that often rely on specific transcriptional responses. Priming is part of the defence syndrome, by establishing a hypersensitive state of defence genes such as after a first encounter with a pathogen. Because activation of defence responses has a fitness cost, priming must be tightly controlled to prevent spurious activation of defence. However, mechanisms that repress defence gene priming are poorly understood. Here, we show that the histone chaperone CAF-1 is required to establish a repressed chromatin state at defence genes. Absence of CAF-1 results in spurious activation of a salicylic acid-dependent pathogen defence response in plants grown under non-sterile conditions. Chromatin at defence response genes in CAF-1 mutants under non-inductive (sterile) conditions is marked by low nucleosome occupancy and high H3K4me3 at transcription start sites, resembling chromatin in primed wild-type plants. We conclude that CAF-1-mediated chromatin assembly prevents the establishment of a primed state that may under standard non-sterile growth conditions result in spurious activation of SA-dependent defence responses and consequential reduction of plant vigour.

13.
J Agric Food Chem ; 62(34): 8602-7, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25070068

RESUMO

Nine strains of the fungus Phomopsis spp. were isolated from a vineyard showing decline from the disease esca. Strains were screened for their ability to produce secondary metabolites showing chemical diversity. The culture extracts of each strain were analyzed by liquid chromatography-ultraviolet-diode array detection-mass spectrometry. Three strains were selected for the isolation and characterization of eight of the major metabolites. Structures were elucidated by spectroscopic analyses including two-dimensional NMR and mass spectrometry and by comparison to literature data. Among the isolated metabolites were the known phomopsolide B (1), sydowinin A (6), sydowinol (7), cytosporone B (8), and four new furanones named phomopsolidones A-D (2-5). The fungal strains were identified as Phomopsis sp., Phomopsis viticola Sacc and, Phomopsis viticola complex. Biological assays on Vitis vinifera leaves and callus tissue, antibacterial, and insecticidal activities were evaluated. The results revealed variability regarding secondary metabolites with species of Phomopsis sp. associated with grapevine, raising the question of cultivar-driven strain selection and phytotoxins biosynthesis in grapevine plants.


Assuntos
Ascomicetos/química , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Vitis/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Estrutura Molecular , Micotoxinas/química , Micotoxinas/toxicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Vitis/efeitos dos fármacos
14.
Phytopathology ; 104(10): 1021-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24724741

RESUMO

Botryosphaeria dieback is a fungal grapevine trunk disease that represents a threat for viticulture worldwide due to the decreased production of affected plants and their premature death. This dieback is characterized by a typical wood discoloration called brown stripe. Herein, a proteome comparison of the brown striped wood from Botryosphaeria dieback-affected standing vines cultivars Chardonnay, Gewurztraminer, and Mourvèdre was performed. The transcript analysis for 15 targeted genes and the quantification of both total phenolics and specific stilbenes were also performed. Several pathogenesis-related proteins and members of the antioxidant system were more abundant in the brown striped wood of the three cultivars, whereas other defense-related proteins were less abundant. Additionally, total phenolics and some specific stilbenes were more accumulated in the brown striped wood. Strongest differences among the cultivars concerned proteins of the primary metabolism, which looked to be particularly impaired in the brown striped wood of 'Chardonnay'. Low abundance of some proteins involved in defense response probably contributes to make global response insufficient to avoid the symptom development. The differential susceptibility of the three grapevine cultivars could be linked to the diverse expression of various proteins involved in defense response, stress tolerance, and metabolism.


Assuntos
Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Proteoma , Vitis/metabolismo , Eletroforese em Gel Bidimensional , Fenóis/metabolismo , Doenças das Plantas/microbiologia , Estilbenos/metabolismo , Vitis/imunologia , Vitis/microbiologia , Madeira
15.
BMC Plant Biol ; 13: 133, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24033927

RESUMO

BACKGROUND: In a previous study we have shown that wounding of Arabidopsis thaliana leaves induces a strong and transient immunity to Botrytis cinerea, the causal agent of grey mould. Reactive oxygen species (ROS) are formed within minutes after wounding and are required for wound-induced resistance to B. cinerea. RESULTS: In this study, we have further explored ROS and resistance to B. cinerea in leaves of A. thaliana exposed to a soft form of mechanical stimulation without overt tissue damage. After gentle mechanical sweeping of leaf surfaces, a strong resistance to B. cinerea was observed. This was preceded by a rapid change in calcium concentration and a release of ROS, accompanied by changes in cuticle permeability, induction of the expression of genes typically associated with mechanical stress and release of biologically active diffusates from the surface. This reaction to soft mechanical stress (SMS) was fully independent of jasmonate (JA signaling). In addition, leaves exposed soft mechanical stress released a biologically active product capable of inducing resistance to B. cinerea in wild type control leaves. CONCLUSION: Arabidopsis can detect and convert gentle forms of mechanical stimulation into a strong activation of defense against the virulent fungus B. cinerea.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Folhas de Planta/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Mecânico
16.
J Exp Bot ; 64(11): 3385-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23833195

RESUMO

Pathogen and Circadian Controlled 1 (PCC1) was previously characterized as a regulator of defence against pathogens and stress-activated transition to flowering. Plants expressing an RNA interference construct for the PCC1 gene (iPCC1 plants) showed a pleiotropic phenotype. They were hypersensitive to abscisic acid (ABA) as shown by reduced germination potential and seedling establishment, as well as reduced stomatal aperture and main root length in ABA-supplemented media. In addition, iPCC1 plants displayed alterations in polar lipid contents and their corresponding fatty acids. Importantly, a significant reduction in the content of phosphatidylinositol (PI) was observed in iPCC1 leaves when compared with wild-type plants. A trend in reduced levels of 18:0 and increased levels of 18:2 and particularly 18:3 was also detected in several classes of polar lipids. The enhanced ABA-mediated responses and the reduced content of PI might be responsible for iPCC1 plants displaying a complex pattern of defence against pathogens of different lifestyles. iPCC1 plants were more susceptible to the hemi-biotrophic oomycete pathogen Phytophthora brassicae and more resistant to the necrotrophic fungal pathogen Botrytis cinerea compared with wild-type plants.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Fosfatidilinositóis/metabolismo , Doenças das Plantas
17.
Plant Physiol ; 162(4): 1815-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23757404

RESUMO

Salicylic acid (SA) is central for the defense of plants to pathogens and abiotic stress. SA is synthesized in chloroplasts from chorismic acid by an isochorismate synthase (ICS1); SA biosynthesis is negatively regulated by autoinhibitory feedback at ICS1. Genetic studies indicated that the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) of Arabidopsis (Arabidopsis thaliana) is necessary for SA accumulation after biotic and abiotic stress, but so far it is not understood how EDS5 controls the biosynthesis of SA. Here, we show that EDS5 colocalizes with a marker of the chloroplast envelope and that EDS5 functions as a multidrug and toxin extrusion-like transporter in the export of SA from the chloroplast to the cytoplasm in Arabidopsis, where it controls the innate immune response. The location at the chloroplast envelope supports a model of the effect of EDS5 on SA biosynthesis: in the eds5 mutant, stress-induced SA is trapped in the chloroplast and inhibits its own accumulation by autoinhibitory feedback.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Transporte Biológico , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Cloroplastos/genética , Citoplasma/genética , Citoplasma/metabolismo , Imunidade Inata , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Nigericina/farmacologia , Plantas Geneticamente Modificadas , Protoplastos/metabolismo , Raios Ultravioleta
18.
PLoS Pathog ; 7(7): e1002148, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829351

RESUMO

Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H(2)O(2) and O(2) (-), are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H(2)O(2) was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses.


Assuntos
Arabidopsis , Botrytis/imunologia , Peróxido de Hidrogênio/imunologia , Doenças das Plantas , Imunidade Vegetal/fisiologia , Folhas de Planta , Superóxidos/imunologia , Ácido Abscísico/genética , Ácido Abscísico/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Carboxiliases/genética , Carboxiliases/imunologia , Coenzima A Ligases/genética , Coenzima A Ligases/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipídeos de Membrana/genética , Lipídeos de Membrana/imunologia , Mutação/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Trametes/genética
19.
Plant J ; 68(3): 507-19, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21756272

RESUMO

Botrytis cinerea is a major pre- and post-harvest necrotrophic pathogen with a broad host range that causes substantial crop losses. The plant hormone jasmonic acid (JA) is involved in the basal resistance against this fungus. Despite basal resistance, virulent strains of B. cinerea can cause disease on Arabidopsis thaliana and virulent pathogens can interfere with the metabolism of the host in a way to facilitate infection of the plant. However, plant genes that are required by the pathogen for infection remain poorly described. To find such genes, we have compared the changes in gene expression induced in A. thaliana by JA with those induced after B. cinerea using genome-wide microarrays. We have identified genes that are repressed by JA but that are induced by B. cinerea. In this study, we describe one candidate gene, ATGRXS13, that encodes for a putative glutaredoxin and that exhibits such a crossed expression. In plants that are infected by this necrotrophic fungus, ATGRXS13 expression was negatively controlled by JA and TGA transcription factors but also through a JA-salicylic acid (SA) cross-talk mechanism as B. cinerea induced SA production that positively controlled ATGRXS13 expression. Furthermore, plants impaired in ATGRXS13 exhibited resistance to B. cinerea. Finally, we present a model whereby B. cinerea takes advantage of defence signalling pathways of the plant to help the colonization of its host.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Botrytis/patogenicidade , Glutarredoxinas/metabolismo , Doenças das Plantas/genética , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Ciclopentanos/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/genética , Dados de Sequência Molecular , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , RNA de Plantas/genética , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
FEBS Lett ; 585(12): 1847-52, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21530511

RESUMO

Salicylic acid (SA) is an important signal involved in the activation of plant defence responses against abiotic and biotic stress. SA may derive from the phenylpropanoid pathway or via isochorismate synthase as demonstrated in Nicotiana benthamiana, tomato and Arabidopsis thaliana. The phenylpropanoid pathway as well as isochorismate synthase are localized in the chloroplasts but it remains unknown if the end product SA is in the same organelle. We have studied the localization of SA in A. thaliana using the salicylate hydroxylase (NahG) gene expressed with a chloroplast targeting sequence. Plants expressing NahG in the chloroplasts are unable to accumulate SA induced after pathogen or UV exposure. Our data infer that SA is initially located in the chloroplasts.


Assuntos
Ácido Salicílico/análise , Transdução de Sinais , Estresse Fisiológico , Arabidopsis , Cloroplastos , Oxigenases de Função Mista , Fenômenos Fisiológicos Vegetais , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...